Aeruginascin: An Understudied Psilocybin Derivative

Aeruginascin – An Overlooked Molecule in “Magic Mushrooms”

Aeruginascin is a compound present in some species of “magic mushrooms.”  Structurally, this molecule is closely related to psilocybin.  However, aeruginascin is seldom mentioned in the contemporary or scientific literature . Psilocybin is the most discussed compound in so-called “magic mushrooms.” (Technically, psilocybin is not the active molecule in magic mushrooms.  It is a prodrug of psilocin, which is the active molecule.  When ingested, psilocybin is readily converted into psilocin, providing the psychoactive effects.)

Because of its potential utility in medical treatments, scientists have become increasingly interested in psilocybin and psilocin. Scientists would also benefit from investigating other psilocybin derivatives, such as Baeocystin, Norbaeocystin, and Aeruginascin.

What is Aeruginascin?

Like baeocystin and norbaeocystin, aeruginascin is a compound that is structurally similar to psilocybin. Aeruginascin is described by at least three chemical names: 3-(2-trimethylaminoethyl) indol-4-yl dihydrogen phosphate; N, N, N-trimethyl-4-phosphoryloxytryptamine; and 4-phosphoryloxy-N,N,N-trimethyltryptamine.

Aeruginascin is known to occur naturally in the psychoactive mushroom Inocybe aeruginascens.  See Gartz 1989, below.

Structurally, the molecule aeruginascin resembles psilocybin and baeocystin. It differs by having three methyl groups (instead of one or two) on the ethylamine moiety.

 

 

 

 

 

 

 

 

In 1989, scientist J.Gartz found that the fruit bodies of Inocybe aeruginascens were rich in aeruginascin.  See Gartz 1989. Scientists have also synthesized aeruginascin in the laboratory.

Aeruginascin – Effect on Humans

Aeruginascin’s specific mode of action remains unstudied. In contrast to psilocybin and psilocin, ingesting aeruginascin is considered to produce only euphoria, as opposed to hallucinations. See Gartz.

Because it is a quaternary amine, scientists hypothesize that aeruginascin cannot cross the blood brain-barrier, except when it is metabolically demethylated or when is accompanied by a specific transporter. Penetrating the blood brain barrier is important to generating the psychoactivity observed for the dimethylated analogs psilocybin and psilocin.  One would expect similar logic to apply to aeruginascin.

References:

Gartz, J. (1989) Analysis of Aeruginascin in Fruit Bodies of the Mushroom
Inocybe aeruginascens, International Journal of Crude Drug Research, 27:3, 141-144, DOI:
10.3109/13880208909053954

Jensen, N.; Gartz, J.; and Laatsch, H. (2006). Aeruginascin, a Trimethylammonium Analogue of Psilocybin from the Hallucigenic Mushroom Inocybe aeruginascens. Planta Med. 72, 665-666.

 

4 thoughts on “Aeruginascin: An Understudied Psilocybin Derivative

  1. michael braybon

    have tryed them when i was very much younger and got to say was ok not trippy but just a full body stone

    • Staff Scientist Post author

      How did you get access to pure aeruginascin?

  2. Shawn Robertson

    We both know it wasn’t pure aeruginascin. I know you can get to a crystal substance by doing extraction with 100% methanol or ethanol and keep washing until you get a purer substance. As far as I’m aware that will extract all psilocybin derivatives. I’m not aware of any process that will separate them once extracted.

    • Staff Scientist Post author

      There are several different chromatography methods that will provide excellent separation of mixtures of psilocybin derivatives.

Comments are closed.