Blue Bruising – The Psilocybin Mushroom Bluing Reaction

Blue Bruising & Psilocybin Mushrooms

Blue bruising is one of the most famous features of psilocybin containing mushrooms.  Blue bruising (along with two other features) provides strong evidence that a particular mushroom is an active psilocybin mushroom.  The complete 3-part test for identifying an active psilocybin mushroom is as follows:

  1. The mushroom bruises bluish;
  2. The mushroom deposits a purple-brown spore print; and
  3. The mushroom has a semi-gelatinous separable pellicle.
Blue bruising of psilocybe azurescens – note the blue color on the stem and along the edge of the cap

Although the bluing reaction is widely known and discussed, no one has identified the cause of the bluish color.  According to Paul Stamets in Psilocybin Mushrooms of the World, “No one, to date, has been able to pinpoint the chemical structure of the bluing compound.

Stamets contends that the bluish pigmentation is “a result of a phenomenon paralleling the degradation of unstable psilocin (dephosphorylated psilocybin) to presently unknown compounds by enzymes within the mushroom cells. What this means is that when a Psilocybe or Panaeolus bruises bluish, the color reaction is a co-indicator that psilocin is or was present. Naturally, since the bluing phenomenon appears to be a parallel decomposition sequence, the more the mushrooms are bruised the less potent they become.”

Bluing reaction of Psilocybe cyanescens, an active psilocybin mushroom – note the blue color around the edge of the cap.

Other researchers agree that the bluing has little to do with the overall content of psilocin or psilocybin. See References 1, 2, and 3 below. If the blue color arises from the degradation of active molecules, then it provides (at best) an indicator of how potent the mushroom was – before the bruising.
Notably several mushrooms (e.g., some Boletus species) which do not contain any psilocybin or psilocin have a bluing reaction. However, that bluing reaction in those species is probably different —  namely different molecules, a different shade of blue, and a different reaction leading to it.  It is also known that some mushrooms that do contain psilocybin and psilocin do not bruise at all.

What Do we know about the Blue Color?

Several different explanations have been offered for the bluing reaction in psilocybin mushrooms.  The correct answer must account for all of the known facts.  Here is a summary of the significant facts:

  1. The bluish color arises upon damage to the psilocybin comprising mushroom. This can occur by manipulating the mushroom.  It can also occur from environmental factors, such as microbial contamination.  See Black Rot. In either case, damage to the mushroom’s structure exposes the molecules to ambient oxygen;
  2. The bluish compound is water soluble and remains in the aqueous layer upon filtration and/or washing with non-polar solvents such as hexanes;
  3. Adding an antioxidant (e.g., ascorbic acid and/or sodium ascorbate) prevents bluing within a suspension of mushroom material in water;
  4. Adding an antioxidant (e.g., ascorbic acid and/or sodium ascorbate) to a blue aqueous solution (i.e., an aqueous solution comprising the blue compound) eliminates the blue color to provide a clear colorless solution;
  5. The presence of psilocybin and/or psilocin appears to be required for bluing . . .
  6. . . . but, presence of psilocybin and/or psilocin does not guarantee blue bruising.  In other words, the psilocybin and/or psilocin must react with something else aside from just water and oxygen in order to generate the blue compound.

Proposed Mechanism for Bluing Reaction

Based on the above facts, it appears that the bluing reaction requires two components: (1) a psilocin derivative and (2) another biological component present in some but not all psilocybin mushrooms.  See facts 5 & 6 above.

We propose that the blue color is due to a transition metal compound (probably a copper compound) comprising a psilocin derivative. The copper reagent probably comes from an enzyme present in many (but not all) species of psilocybin containing mushrooms.  Upon exposure to oxygen and water, psilocybin/psilocin reacts with the copper reagent to generate a new (blue, water soluble) copper coordination compound.  Many copper compounds are known to have a deep blue color.  Notably, many copper amines are deep blue.  The most famous (and fundamental) example is probably adding ammonia to a solution of copper (2+) ion.

This mechanism also accounts for facts 3 & 4 above because adding ascorbic acid to the solution would destroy the blue copper compound, e.g., by reducing the copper from Cu(2+) to Cu(1+).

Further Research Regarding Bluing Reaction

Our current understanding of the psilocybin bluing reaction highlights the unmet need for better psilocybin chemistry.  Here, a few relatively simple chemical experiments could help us elucidate the blue color observed up bruising many varieties of psilocybin mushrooms.

For example, could we synthesize and characterize a series copper tryptamine compounds, demonstrating a blue color?  If so, we could also explain the varying shades of blue that are observed in different species of mushrooms. See Shroomery (“There is also another tryptamine alkaloid found in some mushrooms, called aeruginascine. It is believed to contain phosphorus like psilocybin, norbaeocystin, and baeocystin. Mushrooms with this alkaloid tend to stain greenish-blue instead of the normal cyan blue that regular psychedelic mushrooms stain.”)

It would also be informative to perform some experiments using pure psilocin and/or psilocybin — both with and without the presence of oxygen.  This experiment would likely show that the oxidation of psilocin and/or psilocybin does not lead to a blue compound absent some “other stuff” (e.g., copper containing enzymes as described above) that is present in naturally occurring psilocybin mushrooms.

Request for Research Proposals

Psilocybin Technology and The Journal of Psilocybin Science have acquired funding for investigating the psilocybin bluing reaction.  If you are interested in studying this reaction, please see our page regarding submitting a research proposal.

References for Psilocybin Bluing Reaction

  1. GARTZ J., 1991- Quantitative Bestimmung der Indolderivate von Psilocybe semilanceata (Fr.) Kumm. Biochem. Physiol. Pflanzen 181: 113-128.
  2. GARTZ J., 1987- Variation der Alkaloidmengen in Fruchtkörpern von Inocybe aeruginascens. Planta Med. 48: 539-541.
  3. GARTZ J., 1989- Analyse der Indolderivate in Fruchtkörpern und Myzelien von Panaeolus subalteatus (Berk. & Br.) Sacc. Biochem. Physiol. Pflanzen 184: 171-178.
  4. Stamets, P. (1996). Psilocybin mushrooms of the world: An identification guide. Berkeley, Calif: Ten Speed Press.
  5. Rutgers University General Chemistry example.
  6. Wikipedia “Copper” (see coordination chemistry).

3 thoughts on “Blue Bruising – The Psilocybin Mushroom Bluing Reaction

  1. Adam

    Nice article, the ascorbic acid can also stabilize and extract in a parallel reaction with heat/distilled water . Paired with light canning(180-190f) the solution will store quite well in a low light room temperature setting. .

    • Staff Scientist Post author

      Hi Adam,
      Your technique makes sense. However, wouldn’t it be better to store the active components in solid form instead of a solution? For example, extract with methanol, then strip the solvent, then recrystalize from methanol? I suppose the downside there would be potentially eliminating minor components from the mixture in order to arrive at pure crystals of psilocybin. I’ve also seen some folks converting the psilocybin to psilocin before crystalizing it. While that has some advantages from a solubility/crystalization standpoint, I would rather work up psilocybin (instead of psilocin) based on stability (sensitivity to oxidation) considerations.
      Thanks for reading and commenting.

      • Adam

        Yes I think it would be better. Although it goes through such a rapid oxidation once out of the alcoholl (since alcohol performs as the anti oxidant) it usually loses most if not all activity but likely still test positive. I think the “salt” form would have to be changed through an acid base before arriving on a product that doesn’t oxidize so quickly outside of the fungal material/liquid.No experience with methanol but ethanol a poor choice of solvent for this but still viable performs this way. Once the alcohol is removed it loses a tremendous amount of activity. Same with water/ascorbic once the liquids gone it loses. I think the grey area is that the substance will likely still test positive for psilocybin/psilocin but “activity” will be tremendously different if not inactive all together. The method described in the previous comment is proven up to 30 days with no loss which id almost assume it would be much much longer stored in the right conditions. Thanks for the reply! Best regards

Comments are closed.